Interactiveartificial Bee Colony Supported Passive Continuous Authentication System

Abstract

Artificial bee colony (ABC) has been a competitive population-based optimization algorithm in recent years. However, it still faces a challenge that shows slow convergence speed. To address this concerning issue, this chapter proposes two global-best leading algorithms, GLABC-pso and GLABC-de, to accelerate their convergence speed and make a precise search on the condition of guaranteeing their global search abilities. In our algorithms, GLABC-pso and GLABC-DE gets the merits of the Particle Swarm Optimization (PSO) and the Differential Evolution (DE) in the employed bee phase, respectively. Furthermore, both two algorithms utilize the same global-best leading strategy in the onlooker bee phase. To evaluate their performances, a set of benchmark functions are employed in this chapter. Experimental results demonstrate that our methods outperform the state-of-the-art algorithms in terms of solution accuracy and stability.

Keywords

  • Artificial bee colony
  • Global-best leading
  • Convergence rate

References

  1. D. Karaboga, An idea based on Honey Bee Swarm For Numerical Optimization, Erciyes Univ., Kayseri, Turkey, Tech. Rep.-TR06, (2005)

    Google Scholar

  2. S.K. Goudos, K. Siakavara, J.N. Sahalos, Novel spiral antenna design using artificial bee colony optimization for UHF RFID applications. IEEE Antennas Wirel. Propag. Lett. 13, 528–531 (2014)

    CrossRef  Google Scholar

  3. X. Li, M. Yin, Hybrid differential evolution with artificial bee colony and its application for design of a reconfigurable antenna array with discrete phase shifters. IET Microwaves Antennas Propag. 6(14), 1573–1582 (2012)

    CrossRef  Google Scholar

  4. X. Zhang, X. Zhang, S.L. Ho, et al., A modification of artificial bee colony algorithm applied to loudspeaker design problem. IEEE Trans. Magn. 50(2), 737–740 (2014)

    CrossRef  Google Scholar

  5. X. Zhang, X. Zhang, S.Y. Yuen, et al., An improved artificial bee colony algorithm for optimal design of electromagnetic devices. IEEE Trans. Magn. 49(8), 4811–4816 (2013)

    CrossRef  Google Scholar

  6. C. Ozturk, D. Karaboga, Hybrid artificial bee colony algorithm for neural network training[C]//Evolutionary Computation (CEC), in 2011 IEEE congress on. IEEE, (2011), pp. 84–88

    Google Scholar

  7. T.J. Hsieh, H.F. Hsiao, W.C. Yeh, Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2510–2525 (2011)

    CrossRef  Google Scholar

  8. H. Xu, M. Jiang, K. Xu, Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm. J. Syst. Eng. Electron. 26(2), 388–396 (2015)

    CrossRef  MathSciNet  Google Scholar

  9. P.W. Tsai, M.K. Khan, J.S. Pan, et al., Interactive artificial bee colony supported passive continuous authentication system. IEEE Syst. J. 8(2), 395–405 (2014)

    CrossRef  Google Scholar

  10. Q.K. Pan, L. Wang, K. Mao, et al., An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE Trans. Autom. Sci. Eng. 10(2), 307–322 (2013)

    CrossRef  Google Scholar

  11. S.C. Horng, Combining artificial bee colony with ordinal optimization for stochastic economic lot scheduling problem. IEEE Trans. Syst. Man Cybern. Syst. 45(3), 373–384 (2015)

    CrossRef  Google Scholar

  12. H. Duan, S. Li, Artificial bee colony??? Based direct collocation for reentry trajectory optimization of hypersonic vehicle. IEEE Trans. Aerosp. Electron. Syst. 51(1), 615–626 (2015)

    CrossRef  Google Scholar

  13. M. Li, H. Zhao, X. Weng, et al., Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization. J. Syst. Eng. Electron. 26(3), 603–617 (2015)

    CrossRef  Google Scholar

  14. W. Gao, S. Liu, A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)

    CrossRef  MATH  Google Scholar

  15. G. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math Comput. 217(7), 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar

  16. D. Karaboga, B. Gorkemli, A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J]. Appl. Soft Comput. 23, 227–238 (2014)

    CrossRef  Google Scholar

  17. W. Gao, S. Liu, L. Huang, A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar

  18. W. Gao, S. Liu, L. Huang, A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cyber. 43(3), 1011–1024 (2013)

    CrossRef  Google Scholar

  19. B. Akay, D. Karaboga, A modified artificial bee colony algorithm for real-parameter optimization[J]. Inform. Sci. 192, 120–142 (2012)

    CrossRef  Google Scholar

  20. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in IEEE World Congress on Computational Intelligence, (1998), pp. 69–73

    Google Scholar

  21. R. Storn, K. Price, Differential evolution-a simple and efficient huristic for global optimization over continuous spaces. J. Global Optmi. 11(4), 341–359 (1997)

    CrossRef  MATH  Google Scholar

  22. R.A. Krohling, Gaussian particle swarm with jumps. IEEE Congr. Evol. Comput. 2, 1226–1231 (2005)

    Google Scholar

  23. X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    CrossRef  Google Scholar

  24. M.M. Ali, C. Khompatraporn, Z.B. Zabinsky, A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4), 635–672 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar

  25. X. Liao, J. Zhou, R. Zhang, et al., An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems. Int. J. Electr. Power Energy Syst. 43(1), 1340–1345 (2012)

    CrossRef  Google Scholar

  26. R.C. Blair, J.J. Higgins, A comparison of the power of wilcoxon's rank-sum statistic to that of student'st statistic under various nonnormal distributions. J. Educ. Behav. Stat. 5(4), 309–335 (1980)

    Google Scholar

  27. L.D.S. Coelho, P. Alotto, Gaussian artificial bee colony algorithm approach applied to Loney's solenoid benchmark problem. IEEE Trans. Magn. 47(5), 1326–1329 (2011)

    CrossRef  Google Scholar

  28. R. Lu, H.D. Hu, M.L. Xi, et al., An improved artificial bee colony algorithm with fast strategy and its application. Comput. Electr. Eng. 78, 79–88 (2019)

    CrossRef  Google Scholar

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (No. 61571236), the Science and Technology on Space Intelligent Control Laboratory (KGJZDSYS-2018-02), the Research Committee of University of Macau (MYRG2015-00011-FST, MYRG2018-00035-FST), the Science and Technology Development Fund of Macau SAR under Grant 041-2017-A1, and Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX18_0300, KYCX18_0929).

Author information

Authors and Affiliations

Editor information

Editors and Affiliations

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Gao, H. (2021). Global-Best Leading Artificial Bee Colony Algorithms. In: Li, Y., Lu, H. (eds) 3rd EAI International Conference on Robotic Sensor Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-46032-7_6

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/10.1007/978-3-030-46032-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46031-0

  • Online ISBN: 978-3-030-46032-7

  • eBook Packages: Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)

bergevinwhicive.blogspot.com

Source: https://link.springer.com/chapter/10.1007/978-3-030-46032-7_6

0 Response to "Interactiveartificial Bee Colony Supported Passive Continuous Authentication System"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel